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Abstract

Systems for automated image analysis are useful for a variety of tasks. Their importance is still growing due to technological advances and
increased social acceptance. Especially driver assistance systems have reached a high level of sophistication. Fully or partly autonomously
guided vehicles, particularly for road traffic, require highly reliable algorithms due to the conditions imposed by natural environments. At the
Institut für Neuroinformatik, methods for analyzing driving relevant scenes by computer vision are developed in cooperation with several
partners from the automobile industry. We present a system extracting important information from an image taken by a CCD camera installed
at the rear-view mirror in a car. The approach is divided into a sequential and a parallel phase of sensor and information processing. Three
main tasks, namely initial segmentation (object detection), object tracking and object classification are realized by integration in the
sequential phase and by fusion in the parallel phase. The main advantage of this approach is integrative coupling of different algorithms
providing partly redundant information.q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Some systems presented in Refs. [1–3] show the principal
feasibility of driver assistance systems based on computer
vision. Although exclusively vision-based systems and
algorithms are not yet powerful enough to solve all driv-
ing-relevant tasks, a large amount of different scenarios can
be interpreted sufficiently. Additionally sensors like radar
and lidar extend the range of sensor information available
for building a reliable system. The main focus of our system
lies in combining various methods for the analysis and inter-
pretation of images and in the fusion of a large spectrum of
sensor data for extracting the most reliable information for
the final planning and for prediction of the behavior of other
traffic participants.

The great variety of different scenarios as well as the high
degree of reliability necessary for the given task require an
encompassing and flexible system architecture. Reliability
of the reached solution, the variety of geometric appear-
ances of involved objects and environmental constraints of
both deterministic as well as statistical nature necessitate a
multitude of partial solutions based on different representa-
tions of the environment. Consequently, complexity and

structure of the overall system have to be adaptable in
order to accommodate additional methods without degen-
eration of already accomplished partial solutions. For this
reason, evensimpleapplications are encumbered by consid-
erations concerning the overall system architecture. Basi-
cally, the overall system architecture can be divided into
basic, fusion and integration algorithms. Basic methods
are those providing specific partial solutions under given
constraints. Results and application of the individual algo-
rithms are not independent, resulting in an increase in
redundancy making the overall system secure and reliable
given a suitable coupling architecture. The necessary meth-
ods for fusion and integration ensure a flexible cooperation
of the basic building blocks as well as the integrative
evaluation of results. In a similar way, sequential data
processing and dynamic components are necessary in
order to build up an overall system and to give solutions
to complex tasks.

2. Image processing system

The fusion of different sensor information and preproces-
sing results increases the performance of the system. The
basic methods are specialized for a specific kind of sensor
information. For this reason the choice of algorithm is
highly dependent on the spatial characteristics of the
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applications. As shown in Fig. 1, information typically
differs depending on its spatial relation to the vehicle. In
the area F1 contour-based methods are chosen. The sparse
nature (edges) of the intensity information is sufficient due
to the high resolution of the objects in the image. In addi-
tion, it speeds up computation time for real time applica-
tions. The feature we most often employ for this purpose is
called local orientation coding [4]. In the field F2, we use
motion detection algorithms segmenting overtaking and
overtaken vehicles. In contrast to algorithms in different
vision fields, we use a pattern tracking based algorithm,
which ensures high stability. The long distance field F3 is
analyzed by texture-based methods. The low spatial resolu-
tion makes edge-based processing infeasible. Nevertheless,
the integrative characteristics of texture analysis provide
good results by separating the objects from the background
by use of their texture. In the area of preprocessing, a multi-
tude of different methods for initial segmentation, object
tracking, and object classification has been developed in
the context of current research. A few tendencies are
remarkable:

• Previous work was often based on the use of higher
features, meaning the generation of a sequence of
features beginning at the iconic (image-based) side and
continuing to the symbolic side. There are two main
reasons to do this. First, the historic rooting of image
processing in material and surface inspection for quality
control has led to the existence of theoretically well-
founded and practically tested algorithms. Second, the
symbolic features are commonly used for compact
coding purposes, so that processed data amounts can be
largely reduced for accommodating limited processing
resources. The rapid evolution of processors has particu-
larly alleviated the impact of this last constraint. In addi-
tion, it appears that particularly in the context of limited
sensor resolution (i.e. in long-distance regions) algo-
rithms can be employed that rely on statistical measures
of extensive ‘early’ (in the chain of processing) feature
sets.

• Often a formulation as an optimization problem can lead
to implicitly robust solutions avoiding disadvantages of
explicit methods (e.g. the correlation of model with

image features, the correspondence problem). In this
area, the increase in available computational power has
contributed to scientific progress, as well.

• Particularly in natural environments, flexible algorithms
possessing a certain learning capability (data-driven
adaption) have desirable characteristics.

3. The basic algorithms

At the Institut für Neuroinformatik, algorithms providing
partial solutions for object detection, tracking and classifi-
cation have been incorporated into a driver assistance archi-
tecture. The following enumeration gives an overview over
the applied methods:

• Initial object detection:local orientation coding [4,5],
polygon approximation of contours [6], use of local
symmetry [7], pattern motion analysis [7], texture analy-
sis based on local image entropy [8], local variance
analysis [9], local co-occurrence measures [7], shadow
analysis [10,11], color analysis [12,13], and radar
mapping [9].

• Object tracking:Hausdorff distance matching [10,14],
parametric optimization [15,16], and cross entropy [17].

• Object classification: local orientation classifier [7],
Hausdorff distance classifier [7,18], co-occurrence clas-
sifier [19], and parametric optimization classifier [15,16].

The algorithms can be classified as working on differen-
tial information (e.g. edges) or integral measurements (e.g.
texture). For the application types initial object detection,
tracking and classification, a description of the actually used
algorithms for a real-time implementation is given.

3.1. Initial object detection

The main motivation of using multiple simple methods is
that the design of a single method suitable for all conceiva-
ble scenarios seems to be impossible. Therefore, in order to
provide reliable results and to ensure a fast and robust
processing, a coupling ofspecialistsis implemented.

The three methods used in the real time implementation,
will now be described. An integration of a differential
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Fig. 1. Separation of the road in fields F1, F2 and F3 in which different algorithms can be applied optimally.



algorithm (local orientation coding), an integrative algo-
rithm (local image entropy) and a shadow analysis method
(model-based) in the real-time system is done.

3.1.1. Local orientation coding
The ‘raw’ gray-scale (intensity) images are preprocessed

by a method we call local orientation coding (LOC). The
image features obtained by this preprocessing are bit
patterns each representing a binary code for the directional
gray-level variation in a pixel neighborhood. In a more
formal fashion the operator is defined as

b0�n;m� �
X
i; j

k�i; j�:u�b�n;m�2 b�n 1 i;m1 j�2 t�i; j��;

�i; j� [ neighborhood �1�
whereb(n,m) denotes the (gray scale) input image,b0(n,m)
the output representation,k a coefficient matrix,t a thresh-
old matrix andu(z) the unit step function. The output repre-
sentation consists of labels, where each label corresponds to
a specific orientation of the neighborhood. An adaption
mechanism for the parameterst of the coding algorithm
yields a high level of flexibility with respect to lighting
conditions [4].

3.1.2. Local image entropy
In the local image entropy (LIE) method [8], an estima-

tion of the information contents of a pixel based on its
neighborhood is given.

The calculation is based on the information theory intro-
duced by Shannon [20]. A part of an image can be inter-
preted as a signalx(n,m) of k different states with the local
entropy En,m(x,y) determining the observer’s uncertainty
about this signal. This is a measure for information content.
For every pixel, the normalized histogram of a centered
neighborhood is calculated as an estimation of the proba-
bility distribution functionpn,m(k)

En;m�x; y� � 2
X

k

pn;m�k� log pn;m�k� �2�

On the basis of the LIE, a saliency map is calculated for
evaluating the separation of objects and background. The
areas of objects and background are cut out by thresholding.

A detection of objects and the free driving space on the lane
can be done.

3.1.3. Shadow analysis
The detection of shadows is realized by thresholding the

intensity image, applying some morphological processing
and a region clustering algorithm stabilized over time. As
already shown by Mori and Charkari [21] the shadow under-
neath a vehicle can be used for object detection. For this task
the gray level of the road is analyzed in order to extract a
thresholdt for shadows. Furthermore, we select those LOC
features that expose horizontal orientation and correspond
to a light-to-dark transition (scanning the image upwards)
and group them in clusters. These clusters are subjected to
further constraints (i.e. from the camera geometry [22]) and
finally make up the initial hypotheses or regions of interest
(ROI) [11].

3.2. Object tracking

Algorithms for object tracking are most important when a
stabilization over time or a prediction of e.g. trajectories is
required. As it can be seen in Fig. 1, the tracking algorithms
are applied depending on the spatial resolution of the
images. In the near-distance field the Hausdorff distance
or order statistics are used as a measurement based on
contour codes (LOC). Here we present the Hausdorff
distance tracker that has been tested successfully on a
large set of different image sequences. For further details
of the approach using order statistics see Ref. [23]. In the
long-distance field and in the case of tracking non-rigid
objects, good supplementary results can be gained by
texture-based cross entropy measures.

3.2.1. Hausdorff distance
The geometric comparison of shapes is a fundamental

tool for model-based object recognition. Most of the meth-
ods used in object recognition systems employ a similarity
measure between model features and image features [24].
The Hausdorff distance measures the divergence of a set of
features from a reference set of features [25]. In the given
application these sets mostly describe object contours. The
comparison of similar object contours yields small distance
values, whereas objects with different contours yield larger
distances.

The directed Hausdorff distanceh of one point setA to a
point setB is the maximum of the minimum distances of
each point of setA to the points of setB. The final Hausdorff
distanceH is simply the maximum of the two directed
distances:

h�A;B� � maxp[A�minq[B�ip 2 qi��
H�A;B� � max�h�A;B�; h�B;A��

�3�

The partial Hausdorff distance performs a ranking of these
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Fig. 2. Vision based object detection, object classification and object track-
ing.



minimum distances and considers a fraction of them instead
of the maximum.

Unlike classical correlation methods, the Hausdorff
distance uses Min–Max operations instead of multiplica-
tions, so it is more efficient. The partial Hausdorff distance
is robust against partially occluded objects and outliers that
may arise at the contours due to noise or insufficient feature
extraction.

The partial Hausdorff distance can examine object
hypotheses in a complex scene. This method was tested
successfully with highway traffic scenes (Fig. 2). It was

able to recognize vehicles on highways and track them
over time. Two degrees of freedom (translation and scaling)
were considered in our model.

3.2.2. Cross entropy
One of the simpler descriptions of textures is obtained by

intensity histograms (first-order statistics). Especially, non-
rigid objects like pedestrians and two-wheeled vehicles,
which possess an additional rotational degree of freedom,
compared to other road-users can be tracked using the cross
entropy (Fig. 3).

As described by Kalinke and von Seelen [17], a matching
process can be performed by comparison of two probability
distributions based on the Kullback–Leibler divergence
[26]. In the given application a model distributionD at
time step �t 2 1� is compared to several hypotheses at
time t in the space of search (translation, scale, and
deformation).

3.3. Neural classifiers for vehicles

For the task of classification, different methods are
applied. Feature-based and model-based solutions have
been developed. The LOC-classifier is a computationally
fast method used for a first classification of a given ROI.
It is intended for separating possible objects from the back-
ground. It is independent from the resolution of the objects
due to normalization in size. In a second stage, two classi-
fiers with higher computational costs perform a more reli-
able classification. The Hausdorff distance classifier
processes objects in the near field with high spatial resolu-
tion, thus enhancing the ROI image coordinates. For details
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Fig. 3. Tracking of pedestrians based on the cross entropy.

Fig. 4. The LOC-classifier process.



of the co-occurrence classifier applied to the long-distance
field, see Ref. [19].

3.3.1. LOC-classifier
With the given local orientation coding [4] described in

Section 3.1.1, a classification of vehicles is realized (Fig. 4).
The classifier has to cope with partial occlusions, varying
illumination conditions, tilt of an object, differently resolved
structures depending on the distance of the object under
consideration, noise and perturbation induced by the record-
ing and processing equipment, different viewpoints and
different kinds of vehicles with different shapes and colors.
Additionally, the classifier should be able to generalize from
relatively few training examples to the necessary features
characterizing a vehicle.

Therefore, a neural network has been chosen for solving
the classification task. It is a feed-forward neural network
with one hidden layer trained by the error back-propagation
algorithm [27]. These networks are known to be universal
estimators for any continuous-valued function [28]. Further-
more, it is shown that these structures can, with some small
modifications, approximate a posteriori probabilities in the
sense of a Bayesian classifier [29].

The inputs for the classifier are certain subsets of the
histograms. The output is the class of the region. The
complete system has been implemented and extensively
tested on the Mercedes Benz VITA II test vehicle [30].

Different classes of vehicles have been trained. For a further
evaluation of the system see Ref. [31].

3.3.2. Hausdorff distance classifier
The geometric property of the Hausdorff distance leads to

the idea of classifying various vehicles into separate classes
according to the imposed dissimilarity measure. Because of
the need for defining a reference contour for each class, we
deal here with a model-based approach. The design of accu-
rate models (prototypes) is of great importance for our task.
At a first step, the Hausdorff distance is used for the classi-
fication of cars and trucks. Due to the fact that rear views of
cars differ significantly from rear views of trucks, one can
expect that the design of generic models for each class can
accomplish the separation of the objects of both classes.

The classification works as follows: each region is
compared with two models, a car model and a truck
model (Fig. 5). The features of the region and the models
have been extracted using the LOC. For more robust results
the horizontal features are separated from the verticals for
both the region and the models.

The Hausdorff distance is computed for each model over
all possible translations inside the region and a certain range
of scales and deformations. The fractions of the features of
the forward (model to image) and the backward (image to
model) match that are consistent with a given distance
threshold constitute the criteria for its classification for
each model. These values are learned by a multi-layer
perceptron (MLP) network using the back-propagation
algorithm.

4. The concept of fusion

Data fusion is one of the main goals to be achieved if a
large amount of stability and reliability is necessary like in
driver assistance systems. On the one hand, a gain in robust-
ness is reached by creating higher redundancy so that poor
or missing results of one data stream do not affect the overall
result decisively [19]. On the other hand, the varying types
of objects and background constellations demand a large
spectrum of data to be processed to solve the given task.
Three different types of neural coupling mechanisms are
introduced [9]. The high flexibility and the possibility of
extension and adaptivity of the retraining processes have
led to the choice of neural networks.
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Fig. 5. Hausdorff distance classifier: each region is compared with two models.

Fig. 6. The coupling model of the fusion process.



The aim of fusion in computer vision is to get an improve-
ment over special solutions and single methods by a
coupling net (parallel branch). The modular coupling of
single processing steps generates redundancy necessary
for object recognition. By this, greater flexibility and robust-
ness of the image processing modules and higher adaptation
of the modules regarding to the problems should be
achieved. In Fig. 6 a principal fusion process for segmenta-
tion is shown. A prototype of this process has been imple-
mented by Handmann et al. [9]. Computer vision modules,
generating lines (polygon approximation of the contour) [6],
local orientation coding [4], local image entropy [32], and
local variance analysis [9] are coupled in a neural network.
In the present implementation a fusion process on the
feature level is selected (MLP with a 16-5-1 structure) for
generating a saliency map (Fig. 7). A feedback over time is
realized, additional sensor information (radar) are inte-
grated.

For the detection of pedestrians a higher-level fusion
process is realized (Fig. 8). We propose a temporal fusion
of walking model matches using the Hausdorff distance and
the LIE. For the final classification, measurement of inde-
pendent motion is incorporated. This leads to the concept of
integration.

5. The concept of integration

The system for the object-related analysis is shown in Fig.
9. The concept of integration (sequential branch) of separate
steps to a reliable working system is mainly based on feed-

back of results for determination of the expected value. In
the following subsections, the sensor information proces-
sing and the sensor-based representational part are
described.

5.1. Sensor information processing

In this section the sensor information processing shown in
Fig. 10 is described. The intensity image and radar signals
are used as sensor input. The results of basic preprocessing
algorithms are fed into a neural fusion architecture yielding
the initial object detection that provides hypotheses of
possible location of vehicles. The very fast LOC-classifier
reduces the set of hypotheses. An internal stabilization over
time ensures further robustness. In order to confirm the
hypothesis, an object tracking is performed where the object
size and type decides whether the Hausdorff tracking or the
cross entropy tracking have to be used. The estimates for
scale, position, and confidence are fed into the main stream
and to the modular classifier. A neural network fed with
object size, Hausdorff and co-occurrence classification
results determines what type of object has been tracked.
The object tracking is performed at every time step. The
initial object detection can work at a slower time rate.
Finally, the classification provides results on larger time
scales due to the fact that a tracked object with high confi-
dence values will not change its class. Hence object tracking
is the most important task next to the detection process. To
ensure stable tracking over time, a Kalman filter is utilized.

The main feedback stream gathers all the results of the
single tasks. The type of information is changing from an
iconic (preprocessing) to a symbolic (classification) descrip-
tion. A global data representation is built. Here the integra-
tion of the different processing steps is accomplished. Task-
dependent pixel-oriented saliency maps (sensor based repre-
sentations) are implemented.

5.2. Sensor-based representations

In the sensor-based representational part of the object-
related analysis the data are combined consistently for
each sensor. Representations in general can be subdivided
into functional modules. They perform the consistent inte-
gration of the processed sensor data over time. Each repre-
sentation has data integration and a knowledge integration
module. An internal memory and internal dynamics have to
be organized (Fig. 11).
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Fig. 7. Image and saliency map.

Fig. 8. Image and pedestrian hypotheses.

Fig. 9. Structure of the object-related analysis.



To be able to compare the results from different sensors,
each representation has to describe a common database on a
comparable time scale (data integration). In this part, the
results of the information processing are evaluated in sensor
coordinates according to consistency and discrepancy or
ambiguity of information. The results of the sensor informa-
tion processing stage are stabilized in movement-sensitive
representations by introducing a third dimension, the time
dimension. In this sense, a ROI is accepted as a valid
hypothesis only if it has a consistent history. This is imple-
mented by spatio-temporal accumulation using different
representations with predefined sensitivities (Fig. 12). The
sensitivities are functions of objects’ supposed relative velo-
city and distance to the observer. In order to apply a time
stabilization to these regions and decide whether they are
valid or not, a prediction of their position in the knowledge
integration part is realized. A competition between the

different representations and a winner-takes-all mechanism
ensures reliable object detections.

This prediction can also be useful for scene interpretation,
since preceding vehicles can be discriminated from oncom-
ing ones. The prediction requires knowledge about the road
trajectory. When the road boundaries can be localized in the
image (e.g. either from GPS/road map information or by a
vision-based approach [1]), then the trajectory of oncoming
vehicles can be estimated, since it lies approximately paral-
lel to the road boundaries. A trapezoid road model is
assumed for small and medium distances. Detected objects
are assumed having a constant relative velocityvr (regarding
only translatory motion without rotational components)
within the time interval of two successive frames. Within
this intervalDt, the running distance of the object is given
by Ds� vrDt in the real world. Using the perspective
geometry and assuming zero tilt for reasons of simplicity,
the motion of the object in the image plane is calculated.

The translation in the vertical direction of an oncoming
vehicle in the next frame depends on its translational
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Fig. 10. Sensor information processing. In the preprocessing part an extraction of relevant features from multiple sensors is done. In the segmentation part a
detection of initial object hypotheses is realized. In the object tracking and classification parts a verification of the hypotheses are performed. In the sensor-
based representations task-dependent saliency maps are implemented to verify the output of the segmentation, the classification and the tracking part of the
system.

Fig. 11. Structure of the representations. Fig. 12. Image and representation.



velocity and its current position (height) in the image. Its
lateral translation can be estimated as the ratio of the trajec-
tory slope and the vertical translation. Thus, for each
detected region its position is predicted for a finite number
of frames and the predicted ROIs are registered in an accu-
mulator field in a similar way as in the case of preceding
vehicles. The predicted ROIs are verified along with newer
regions at each frame separately, and the total activity

(volume) of a region within the time window is the criterion
for the detection of oncoming objects (Fig. 13).

The translation principle can be easily adapted for the
prediction of oncoming vehicles on the right (overtaking
task, Fig. 14). Finally, possible contradictions between
representations are solved by a competing winner-takes-all
mechanism so that a reliable object detection is provided.

6. Real-time implementation

Due to the increase of computational power and the
development of reliable algorithms, fusion and integration
of basic methods for specific problems can be performed to
realize an overall stable system. The stability and robustness
over single algorithms is largely increased. Because the
overall computational demands are still quite large when
using actual standard hardware, a spin-off was realized.
Hence if real-time operation is necessary the processing
has to be limited to a selection of algorithms due to limited
computational resources.

In the real-time implementation the initial object detec-
tion is restricted to a shadow- and a LIE-analysis including a
LOC-classification. The objects are tracked by the Haus-
dorff tracker and classified by the Hausdorff classifier in
order to use just one preprocessed feature map. On a stan-
dard DEC Alpha (500 MHz), the system needs 10 ms for the
initial segmentation including a time stabilization, the LOC-
classification needs 2 ms for every ROI, the tracking is
performed in about 5 ms per object and finally the classifi-
cation takes about 10 ms per object. As mentioned before,
the classification does not need to be calculated for every
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Fig. 13. Image and representation: prediction and detection of oncoming
objects.

Fig. 14. Image and representation: prediction and detection of objects to be
overtaken.

Fig. 15. Object detection, object tracking and object classification on a sequence of 1000 frames under various lighting conditions, different relative velocities
and a large range of distances.



frame. The implementation of the sensor-based representa-
tions requires 2 ms per frame.

This system is capable of obeying the real time require-
ments, but the processing cannot cope with all different
scenarios and we have restricted this application to extra-
urban roads and motorways. In Fig. 15, the results for a
sequence of 1000 frames with various lighting conditions
are shown (regions of interest, class, scaling, and the posi-
tion of the vehicle). Nevertheless, if the performance of the
hardware components will increase, the presented overall
system will be able to cope with most of the scenarios
even in more complex situations.

7. Conclusion and discussion

For driver assistance systems, the organization of differ-
ent kinds of behavior according to given tasks is necessary.
In this paper we presented an image processing system inte-
grating the results and experiences of a long period of
research in computer vision. An object-related analysis
based on a vision sensor was described. Objects are
perceived by a segmentation, a tracking and a classification
task. The object hypotheses are used to build movement-
sensitive representations to get detailed information about
objects in front of the car. The results are shown in Fig. 15.

To organize different kinds of behavior we propose an
architecture (Fig. 16) where the extracted information of the
presented image processing system can be used [33]. In this
architecture, the information about the actual state of the
environment is perceived by the system’s sensors. The
data collected by each sensor have to be processed and
interpreted to gain the desired information for the actual
task [34]. This is done by the object-related analysis. The
object-related analysis has to provide the scene interpreta-
tion with information. In the scene interpretation, the differ-
ent results have to be interpreted and integrated to achieve
consistent results, and the behavior-relevant information has
to be presented to the behavior planning. The behavior plan-
ning is the final element that has to evaluate which action
should be taken to achieve the current task based on the
actual information from the scene interpretation and the
actual knowledge. It also has to decide whether the current

decision or advice is reliable and can be proposed to the
driver (Zhuang et al. [35] use a fuzzy controller for this
element). The actual behavior planning should influence
the scene interpretation to produce the optimal amount of
information needed.
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