Arntz, Alexander; Dia, Agostino Di; Riebner, Tim; Straßmann, Carolin; Eimler, Sabrina C. Teamwork Makes the Dream Work: A Virtual Reality-based Human-Robot Collaboration Sandbox Simulating Multiple Teams Proceedings Article In: 2024 IEEE International Conference on Artificial Intelligence and eXtended and Virtual Reality (AIxVR), S. 335-339, 2024, ISSN: 2771-7453. Abstract | Links | BibTeX | Schlagwörter: Robot kinematics;Virtual assistants;Virtual environments;Industrial robots;Libraries;Teamwork;Task analysis;Human-Robot Collaboration;Virtual Reality;Machine Learning;Artificial Intelligence2024
@inproceedings{10445597,
title = {Teamwork Makes the Dream Work: A Virtual Reality-based Human-Robot Collaboration Sandbox Simulating Multiple Teams},
author = {Alexander Arntz and Agostino Di Dia and Tim Riebner and Carolin Straßmann and Sabrina C. Eimler},
doi = {10.1109/AIxVR59861.2024.00057},
issn = {2771-7453},
year = {2024},
date = {2024-01-01},
urldate = {2024-01-01},
booktitle = {2024 IEEE International Conference on Artificial Intelligence and eXtended and Virtual Reality (AIxVR)},
pages = {335-339},
abstract = {We present a virtual reality-based Human-Robot Collaboration sandbox that allows the representation of multiple teams composed of humans and robots. Within the sandbox, virtual robots and humans can collaborate with their respective partners and interact with other teams to coordinate the required procedures while accomplishing a shared task. For this purpose, the virtual reality sandbox is equipped with a variety of interaction mechanics that enable a range of different shared tasks. The network integration allows for multiple users within the virtual environment. The VR application contains a library of different industrial robots that can act autonomously controlled by machine learning agents and interact with the user through verbal commands. The sandbox is specifically designed to serve as a research tool to explore new concepts and validate existing approaches in the domain of Human-Robot Collaboration involving autonomous robots in a series of upcoming studies.},
keywords = {Robot kinematics;Virtual assistants;Virtual environments;Industrial robots;Libraries;Teamwork;Task analysis;Human-Robot Collaboration;Virtual Reality;Machine Learning;Artificial Intelligence},
pubstate = {published},
tppubtype = {inproceedings}
}