
Lehrgebiet: Theoretische Informatik und künstliche Intelligenz
Büro: 01.214
Labor: 04.105
Telefon: +49 208 88254-806
E-Mail:

Ioannis Iossifidis studierte Physik (Schwerpunkt: theoretische Teilchenphysik) an der Universität Dortmund und promovierte 2006 an der Fakultät für Physik und Astronomie der Ruhr-Universität Bochum.
Am Institut für Neuroinformatik leitete Prof. Dr. Iossifidis die Arbeitsgruppe Autonome Robotik und nahm mit seiner Forschungsgruppe erfolgreich an zahlreichen, vom BmBF und der EU, geförderten Forschungsprojekten aus dem Bereich der künstlichen Intelligenz teil. Seit dem 1. Oktober 2010 arbeitet er an der HRW am Institut Informatik und hält den Lehrstuhl für Theoretische Informatik – Künstliche Intelligenz.
Prof. Dr. Ioannis Iossifidis entwickelt seit über 20 Jahren biologisch inspirierte anthropomorphe, autonome Robotersysteme, die zugleich Teil und Ergebnis seiner Forschung im Bereich der rechnergestützten Neurowissenschaften sind. In diesem Rahmen entwickelte er Modelle zur Informationsverarbeitung im menschlichen Gehirn und wendete diese auf technische Systeme an.
Ausgewiesene Schwerpunkte seiner wissenschaftlichen Arbeit der letzten Jahre sind die Modellierung menschlicher Armbewegungen, der Entwurf von sogenannten «Simulierten Realitäten» zur Simulation und Evaluation der Interaktionen zwischen Mensch, Maschine und Umwelt sowie die Entwicklung von kortikalen exoprothetischen Komponenten. Entwicklung der Theorie und Anwendung von Algorithmen des maschinellen Lernens auf Basis tiefer neuronaler Architekturen bilden das Querschnittsthema seiner Forschung.
Ioannis Iossifidis’ Forschung wurde u.a. mit Fördermitteln im Rahmen großer Förderprojekte des BmBF (NEUROS, MORPHA, LOKI, DESIRE, Bernstein Fokus: Neuronale Grundlagen des Lernens etc.), der DFG («Motor‐parietal cortical neuroprosthesis with somatosensory feedback for restoring hand and arm functions in tetraplegic patients») und der EU (Neural Dynamics – EU (STREP), EUCogII, EUCogIII ) honoriert und gehört zu den Gewinnern der Leitmarktwettbewerbe Gesundheit.NRW und IKT.NRW 2019.
ARBEITS- UND FORSCHUNGSSCHWERPUNKTE
- Computational Neuroscience
- Brain Computer Interfaces
- Entwicklung kortikaler exoprothetischer Komponenten
- Theorie neuronaler Netze
- Modellierung menschlicher Armbewegungen
- Simulierte Realität
WISSENSCHAFTLICHE EINRICHTUNGEN
- Labor mit Verlinkung
- ???
- ???
LEHRVERANSTALTUNGEN
- ???
- ???
- ???
PROJEKTE
- Projekt mit Verlinkung
- ???
- ???
WISSENSCHAFTLICHE MITARBEITER*INNEN

Dr.-Ing. Muhammad Saif-Ur-Rehmann
Büro:

Felix Grün
Büro:

Marie Schmidt
Büro:

Robert Reichert
Büro:

Tim Sziburis
Büro:

Susanne Blex
Büro:

Farhad Rahmat
Büro:

Muhammad Ayaz Hussain
Büro:

Aline Xavier Fidencio (Gastwissenschaftlerin)
Büro:
AUSGEWÄHLTE PUBLIKATIONEN
-
2023
159.Saif-ur-Rehman, Muhammad; Ali, Omair; Klaes, Christian; Iossifidis, Ioannis
In: arXiv:2304.01355 [cs, math, q-bio], 2023.
Links | BibTeX | Schlagwörter: BCI, Machine Learning, Spike Sorting
@article{saifurrehman2023adaptive,
title = {Adaptive SpikeDeep-Classifier: Self-organizing and self-supervised machine learning algorithm for online spike sorting},
author = {Muhammad Saif-ur-Rehman and Omair Ali and Christian Klaes and Ioannis Iossifidis},
doi = {10.48550/arXiv.2304.01355},
year = {2023},
date = {2023-05-02},
urldate = {2023-05-02},
journal = {arXiv:2304.01355 [cs, math, q-bio]},
keywords = {BCI, Machine Learning, Spike Sorting},
pubstate = {published},
tppubtype = {article}
}
2022
158.Grün, Felix; Saif-ur-Rehman, Muhammad; Glasmachers, Tobias; Iossifidis, Ioannis
Invariance to Quantile Selection in Distributional Continuous Control Artikel
In: arXiv:2212.14262 [cs.LG], 2022.
Links | BibTeX | Schlagwörter: Artificial Intelligence (cs.AI), FOS: Computer and information sciences, I.2.6, I.2.8, Machine Learning, Machine Learning (cs.LG)
@article{grunInvarianceQuantileSelection2022,
title = {Invariance to Quantile Selection in Distributional Continuous Control},
author = {Felix Grün and Muhammad Saif-ur-Rehman and Tobias Glasmachers and Ioannis Iossifidis},
url = {https://arxiv.org/abs/2212.14262},
doi = {10.48550/ARXIV.2212.14262},
year = {2022},
date = {2022-12-29},
urldate = {2022-12-29},
journal = {arXiv:2212.14262 [cs.LG]},
keywords = {Artificial Intelligence (cs.AI), FOS: Computer and information sciences, I.2.6, I.2.8, Machine Learning, Machine Learning (cs.LG)},
pubstate = {published},
tppubtype = {article}
}
157.Lehmler, Stephan Johann; Saif-ur-Rehman, Muhammad; Glasmachers, Tobias; Iossifidis, Ioannis
Deep transfer learning compared to subject-specific models for sEMG decoders Artikel
In: Journal of Neural Engineering, Bd. 19, Nr. 5, 2022.
Abstract | Links | BibTeX | Schlagwörter: BCI, Computational Complexity, Deep Transfer-Learning, Machine Learning, transfer learning
@article{lehmlerTransferLearningPatientSpecific2021bb,
title = {Deep transfer learning compared to subject-specific models for sEMG decoders},
author = {Stephan Johann Lehmler and Muhammad Saif-ur-Rehman and Tobias Glasmachers and Ioannis Iossifidis},
editor = {{IOP Publishing},
url = {https://dx.doi.org/10.1088/1741-2552/ac9860},
doi = {10.1088/1741-2552/ac9860},
year = {2022},
date = {2022-10-28},
urldate = {2022-10-28},
journal = {Journal of Neural Engineering},
volume = {19},
number = {5},
abstract = {{Objective. Accurate decoding of surface electromyography (sEMG) is pivotal for muscle-to-machine-interfaces and their application e.g. rehabilitation therapy. sEMG signals have high inter-subject variability, due to various factors, including skin thickness, body fat percentage, and electrode placement. Deep learning algorithms require long training time and tend to overfit if only few samples are available. In this study, we aim to investigate methods to calibrate deep learning models to a new user when only a limited amount of training data is available. Approach. Two methods are commonly used in the literature, subject-specific modeling and transfer learning. In this study, we investigate the effectiveness of transfer learning using weight initialization for recalibration of two different pretrained deep learning models on new subjects data and compare their performance to subject-specific models. We evaluate two models on three publicly available databases (non invasive adaptive prosthetics database 2–4) and compare the performance of both calibration schemes in terms of accuracy, required training data, and calibration time. Main results. On average over all settings, our transfer learning approach improves 5%-points on the pretrained models without fine-tuning, and 12%-points on the subject-specific models, while being trained for 22% fewer epochs on average. Our results indicate that transfer learning enables faster learning on fewer training samples than user-specific models. Significance. To the best of our knowledge, this is the first comparison of subject-specific modeling and transfer learning. These approaches are ubiquitously used in the field of sEMG decoding. But the lack of comparative studies until now made it difficult for scientists to assess appropriate calibration schemes. Our results guide engineers evaluating similar use cases.},
keywords = {BCI, Computational Complexity, Deep Transfer-Learning, Machine Learning, transfer learning},
pubstate = {published},
tppubtype = {article}
}
{Objective. Accurate decoding of surface electromyography (sEMG) is pivotal for muscle-to-machine-interfaces and their application e.g. rehabilitation therapy. sEMG signals have high inter-subject variability, due to various factors, including skin thickness, body fat percentage, and electrode placement. Deep learning algorithms require long training time and tend to overfit if only few samples are available. In this study, we aim to investigate methods to calibrate deep learning models to a new user when only a limited amount of training data is available. Approach. Two methods are commonly used in the literature, subject-specific modeling and transfer learning. In this study, we investigate the effectiveness of transfer learning using weight initialization for recalibration of two different pretrained deep learning models on new subjects data and compare their performance to subject-specific models. We evaluate two models on three publicly available databases (non invasive adaptive prosthetics database 2–4) and compare the performance of both calibration schemes in terms of accuracy, required training data, and calibration time. Main results. On average over all settings, our transfer learning approach improves 5%-points on the pretrained models without fine-tuning, and 12%-points on the subject-specific models, while being trained for 22% fewer epochs on average. Our results indicate that transfer learning enables faster learning on fewer training samples than user-specific models. Significance. To the best of our knowledge, this is the first comparison of subject-specific modeling and transfer learning. These approaches are ubiquitously used in the field of sEMG decoding. But the lack of comparative studies until now made it difficult for scientists to assess appropriate calibration schemes. Our results guide engineers evaluating similar use cases.156.Grün, Felix; Iossifidis, Ioannis
Exploring Distribution Parameterizations for Distributional Continuous Control Konferenzbeitrag
In: BC22 : Computational Neuroscience & Neurotechnology Bernstein Conference 2022, BCCN Bernstein Network Computational Network, 2022.
Links | BibTeX | Schlagwörter: Machine Learning, Reinforcement learning
@inproceedings{grunExploringDistributionParameterizations2022,
title = {Exploring Distribution Parameterizations for Distributional Continuous Control},
author = {Felix Grün and Ioannis Iossifidis},
doi = {10.12751/nncn.bc2022.112},
year = {2022},
date = {2022-09-15},
urldate = {2022-09-15},
booktitle = {BC22 : Computational Neuroscience & Neurotechnology Bernstein Conference 2022},
publisher = {BCCN Bernstein Network Computational Network},
keywords = {Machine Learning, Reinforcement learning},
pubstate = {published},
tppubtype = {inproceedings}
}
155.Lehmler, Stephan Johann; Saif-ur-Rehman, Muhammad; Iossifidis, Ioannis
Modeling Subject Specfic Surface EMG Features by Means of Deep Learning Konferenzbeitrag
In: BC22 : Computational Neuroscience & Neurotechnology Bernstein Conference 2022, BCCN Bernstein Network Computational Network, 2022.
Links | BibTeX | Schlagwörter: BCI, Machine Learning
@inproceedings{lehmlerModelingSubjectSpecfic2022,
title = {Modeling Subject Specfic Surface EMG Features by Means of Deep Learning},
author = {Stephan Johann Lehmler and Muhammad Saif-ur-Rehman and Ioannis Iossifidis},
doi = {10.12751/nncn.bc2022.309},
year = {2022},
date = {2022-09-15},
urldate = {2022-09-15},
booktitle = {BC22 : Computational Neuroscience & Neurotechnology Bernstein Conference 2022},
publisher = {BCCN Bernstein Network Computational Network},
keywords = {BCI, Machine Learning},
pubstate = {published},
tppubtype = {inproceedings}
}
154.Schmidt, Marie Dominique; Iossifidis, Ioannis
Linking Muscle Activity and Motion Trajectory Konferenzbeitrag
In: BC22 : Computational Neuroscience & Neurotechnology Bernstein Conference 2022, BCCN Bernstein Network Computational Network, 2022.
Links | BibTeX | Schlagwörter: BCI, Machine Learning
@inproceedings{schmidtLinkingMuscleActivity2022,
title = {Linking Muscle Activity and Motion Trajectory},
author = {Marie Dominique Schmidt and Ioannis Iossifidis},
doi = {10.12751/nncn.bc2022.191},
year = {2022},
date = {2022-09-15},
urldate = {2022-09-15},
booktitle = {BC22 : Computational Neuroscience & Neurotechnology Bernstein Conference 2022},
publisher = {BCCN Bernstein Network Computational Network},
keywords = {BCI, Machine Learning},
pubstate = {published},
tppubtype = {inproceedings}
}
153.Sziburis, Tim; Blex, Susanne; Iossifidis, Ioannis
A Dataset of 3D Hand Transport Trajectories Determined by Inertial Measurements from a Single Sensor Konferenzbeitrag
In: BC22 : Computational Neuroscience & Neurotechnology Bernstein Conference 2022, BCCN Bernstein Network Computational Network, 2022.
Links | BibTeX | Schlagwörter: BCI, Machine Learning
@inproceedings{sziburisDataset3DHand2022,
title = {A Dataset of 3D Hand Transport Trajectories Determined by Inertial Measurements from a Single Sensor},
author = {Tim Sziburis and Susanne Blex and Ioannis Iossifidis},
doi = {10.12751/nncn.bc2022.186},
year = {2022},
date = {2022-09-15},
urldate = {2022-09-15},
booktitle = {BC22 : Computational Neuroscience & Neurotechnology Bernstein Conference 2022},
publisher = {BCCN Bernstein Network Computational Network},
keywords = {BCI, Machine Learning},
pubstate = {published},
tppubtype = {inproceedings}
}
152.Fidencio, Aline Xavier; Klaes, Christian; Iossifidis, Ioannis
Closed-Loop Adaptation of Brain-Machine Interfaces Using Error-Related Potentials and Reinforcement Learning Konferenzbeitrag
In: BC22 : Computational Neuroscience & Neurotechnology Bernstein Conference 2022, BCCN Bernstein Network Computational Network, 2022.
Links | BibTeX | Schlagwörter: BCI, Machine Learning
@inproceedings{xavierfidencioClosedloopAdaptationBrainmachine2022,
title = {Closed-Loop Adaptation of Brain-Machine Interfaces Using Error-Related Potentials and Reinforcement Learning},
author = {Aline Xavier Fidencio and Christian Klaes and Ioannis Iossifidis},
doi = {10.12751/nncn.bc2022.136},
year = {2022},
date = {2022-09-15},
urldate = {2022-09-15},
booktitle = {BC22 : Computational Neuroscience & Neurotechnology Bernstein Conference 2022},
publisher = {BCCN Bernstein Network Computational Network},
keywords = {BCI, Machine Learning},
pubstate = {published},
tppubtype = {inproceedings}
}
151.Doliwa, Sebastian; Hussain, Muhammad Ayaz; Sziburis, Tim; Iossifidis, Ioannis
Biologically Inspired Model for Timed Motion in Robotic Systems Konferenzbeitrag
In: 9th IEEE RAS/EMBS International Conference on Biomedical Robotics & Biomechatronics, IEEE, Seoul, South Korea, 2022.
BibTeX | Schlagwörter: Autonomous robotics, Dynamical systems
@inproceedings{doliwaBiologicallyInspiredModel2022,
title = {Biologically Inspired Model for Timed Motion in Robotic Systems},
author = {Sebastian Doliwa and Muhammad Ayaz Hussain and Tim Sziburis and Ioannis Iossifidis},
year = {2022},
date = {2022-08-12},
urldate = {2022-08-12},
booktitle = {9th IEEE RAS/EMBS International Conference on Biomedical Robotics & Biomechatronics},
publisher = {IEEE},
address = {Seoul, South Korea},
keywords = {Autonomous robotics, Dynamical systems},
pubstate = {published},
tppubtype = {inproceedings}
}
150.Fidencio, Aline Xavier; Klaes, Christian; Iossifidis, Ioannis
Error-Related Potentials in Reinforcement Learning-Based Brain-Machine Interfaces Artikel
In: Frontiers in Human Neuroscience, Bd. 16, 2022.
Abstract | Links | BibTeX | Schlagwörter: BCI, EEG, error-related potentials, Machine Learning, Reinforcement learning
@article{xavierfidencioErrorrelated,
title = {Error-Related Potentials in Reinforcement Learning-Based Brain-Machine Interfaces},
author = {Aline Xavier Fidencio and Christian Klaes and Ioannis Iossifidis},
url = {https://www.frontiersin.org/article/10.3389/fnhum.2022.806517},
doi = {https://doi.org/10.3389/fnhum.2022.806517},
year = {2022},
date = {2022-06-24},
urldate = {2022-06-24},
journal = {Frontiers in Human Neuroscience},
volume = {16},
abstract = {The human brain has been an object of extensive investigation in different fields. While several studies have focused on understanding the neural correlates of error processing, advances in brain-machine interface systems using non-invasive techniques further enabled the use of the measured signals in different applications. The possibility of detecting these error-related potentials (ErrPs) under different experimental setups on a single-trial basis has further increased interest in their integration in closed-loop settings to improve system performance, for example, by performing error correction. Fewer works have, however, aimed at reducing future mistakes or learning. We present a review focused on the current literature using non-invasive systems that have combined the ErrPs information specifically in a reinforcement learning framework to go beyond error correction and have used these signals for learning.},
keywords = {BCI, EEG, error-related potentials, Machine Learning, Reinforcement learning},
pubstate = {published},
tppubtype = {article}
}
The human brain has been an object of extensive investigation in different fields. While several studies have focused on understanding the neural correlates of error processing, advances in brain-machine interface systems using non-invasive techniques further enabled the use of the measured signals in different applications. The possibility of detecting these error-related potentials (ErrPs) under different experimental setups on a single-trial basis has further increased interest in their integration in closed-loop settings to improve system performance, for example, by performing error correction. Fewer works have, however, aimed at reducing future mistakes or learning. We present a review focused on the current literature using non-invasive systems that have combined the ErrPs information specifically in a reinforcement learning framework to go beyond error correction and have used these signals for learning.
RESEARCHGATE PROFIL

GOOGLE SCHOLAR PROFIL
